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Microbiome time-course experiments



Modeling approach to microbiome
time-series data

• Main assumption: there is a limited set of unknown 
“core” growth trajectories that characterize OTU 
dynamic response to infection

• Goal: simultaneously discover core trajectories and 
probabilistic assignments of OTUs to them
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Modeling challenges

1. How many core trajectories?

2. Temporal dependences

3. Noisy counts w/ limited # of replicates

4. Individual OTU deviations from core trajectories

counts
time



Challenge #1: How many core trajectories?
Dirichlet Process Mixture Model

• Bayesian nonparametric technique
– Potentially unlimited # of core trajectories
– Infer distribution of trajectories from data

• Prior probability on core trajectory mixture proportions 
uses a “stick-breaking” construction

• Concentration parameter α controls uniformity of breaks
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Challenge #2: temporal dependence

Random walk

Dependent states 
(random walk)
Independent 
states

time

counts



Challenge #3: noisy count data w/ limited 
# of replicates

Poisson Overdispersed, std=0.2

Overdispersed, std=0.3 Overdispersed, std=0.6
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Challenge #4: OTU deviation from 
core trajectory
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Hyperparameters
variances  η, core starting mean ς, DP 

concentration parameter α

Assignments
of OTUs to cores zg

Data Yg

Core variables μk1, δkt, γgk

…

Mixture proportions πk

…

Model schematic



Bayesian model inference

• Estimate probability distribution of variables θ
(hyperparameters, core trajectories, OTU specific 
deviations, OTU assignments, etc.) given the data Y

P(θ | Y) = P(Y | θ)  P(θ) / P(Y)

• We use Gibbs sampling with Adaptive Rejection Monte 
Carlo sampling and/or variable augmentation steps for 
hyperparameters (Java implementation)

posterior likelihood prior



Synthetic data experiment
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Sample #1
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Sample #2
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Sample #250

time

counts



Recovered core trajectories
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Estimated OTU trajectories
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Summary/future work

• Developed novel model for analyzing microbiome time-series data
– Automatically discovers core growth trajectories shared among OTUs 

using nonparametric Bayesian approach
– Addresses challenges of overdispersed data, time dependences, OTU 

specific deviations and uncertainty in # of core growth trajectories
• Implemented inference algorithms in Java and demonstrated 

accurate recovery of trajectories from noisy simulated data
• Future work

– Apply to Citrobacter infection time-course data
– Use model to estimate # of unseen OTUs in samples
– Handle sequencing error
– Incorporate phylogenetic or functional information
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