Computational Discovery of Shared Growth Trajectories from Time-Series Microbiome Data

Georg Kurt Gerber, MD, PhD, MPH

This presentation is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License available at http://creativecommons.org/licenses/by-nc-nd/3.0/

Collaborators

- Lynn Bry¹
- Colleen Cavanaugh³
- Guus Roeselers^{2,3}
- Clara Belzer¹

¹ Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
² Institute of Water and Wetland Research, Radboud University Nijmegen
³ Department of Organismic and Evolutionary Biology, Harvard University

Microbiome time-course experiments

Modeling approach to microbiome time-series data

 Main assumption: there is a limited set of unknown "core" growth trajectories that characterize OTU dynamic response to infection

• Goal: simultaneously discover core trajectories and probabilistic assignments of OTUs to them

Modeling challenges

- 1. How many core trajectories?
- 2. Temporal dependences
- 3. Noisy counts w/ limited # of replicates
- 4. Individual OTU deviations from core trajectories

Challenge #1: How many core trajectories? Dirichlet Process Mixture Model

- Bayesian nonparametric technique
 - Potentially unlimited # of core trajectories
 - Infer distribution of trajectories from data
- Prior probability on core trajectory mixture proportions uses a "stick-breaking" construction
- Concentration parameter α controls uniformity of breaks

$$\pi'_{j} \mid \alpha \sim \text{Beta}(1,\alpha)$$
$$\pi_{j} = \pi'_{j} \prod_{l=1}^{j-1} (1 - \pi'_{l})$$

Challenge #2: temporal dependence

Challenge #3: noisy count data w/ limited # of replicates

Challenge #4: OTU deviation from core trajectory

Model schematic

Bayesian model inference

 Estimate probability distribution of variables θ (hyperparameters, core trajectories, OTU specific deviations, OTU assignments, etc.) given the data Y

$$P(\theta \mid Y) = P(Y \mid \theta) P(\theta) / P(Y)$$

posterior likelihood prior

 We use Gibbs sampling with Adaptive Rejection Monte Carlo sampling and/or variable augmentation steps for hyper

Synthetic data experiment

Sample #1

Sample #2

Sample #250

Recovered core trajectories

Estimated OTU trajectories

Summary/future work

- Developed novel model for analyzing microbiome time-series data
 - Automatically discovers core growth trajectories shared among OTUs using nonparametric Bayesian approach
 - Addresses challenges of overdispersed data, time dependences, OTU specific deviations and uncertainty in # of core growth trajectories
- Implemented inference algorithms in Java and demonstrated accurate recovery of trajectories from noisy simulated data
- Future work
 - Apply to Citrobacter infection time-course data
 - Use model to estimate # of unseen OTUs in samples
 - Handle sequencing error
 - Incorporate phylogenetic or functional information

Funding acknowledgements

- Pilot feasibility grant, Harvard Digestive Diseases Center (P30-DK034854; Cavanaugh, Bry)
- NIH/NICHD (R01-HD061916; Bry, Mantis)
- BWH Pathology Department Residency Training Program